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a b s t r a c t

Wind farms can be analyzed using state estimation methods, which can be used to obtain its running
state, including several aspects that cannot be easily obtained using other methods (e.g., capacitor bank
aging) Using these methods on these types of networks is strongly affected by decoupling between active
and reactive power and by a radial configuration, which is typical. For example, this decoupling affects its
observability and robustness as well as the technical feasibility of the results. To overcome these
drawbacks, an extended state estimation method is proposed in which the models for the different wind
turbine technologies have been incorporated. These models have been mainly generated from mea-
surement data using neural networks and polynomial fitting; these models do not require parameter
values, which are rarely available frommanufacturers. Furthermore, the resulting equations for modeling
wind turbines are easily integrated into the state estimator due to their simplicity and derivatives.Thus, a
method that guarantees feasible results, at least for wind turbines, was generated with increased
observability robustness.

The method was tested using measurement data from the Sotavento Wind Park, which has wind
turbines with different types of technologies.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The statuses of the network and wind turbine generators
(WTGs) are useful for evaluating the proper working conditions of a
wind park; the data from Supervisory Control and Data Acquisition
(SCADA) can be used and are usually implemented in this type of
installation. However, directly using measured data can generate
errors associated with measurement errors and communication
failures, among other concerns. Furthermore, it can only be ob-
tained values directly calculated from measurements; thus, several
relevant factors (e.g., capacitor aging) cannot usually be available. In
this context, state estimation (SE) methods can overcome these
problems.

State estimation (SE) is a method for obtaining the state vari-
ables of a network from a set of measurements [1,2]. Usually, the
measurements are the active and reactive power flowing through
the branches and injected at nodes as well as the magnitude of the
nodes' voltage. Apart from obtaining the network state, this type of
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analysis could be useful for analyzing other aspects related to the
system operation (e.g., out-of-service WTGs, aging capacitor banks,
communication failures and energy loss estimates).

When an SE method is applied, it must be considered that a
wind farm network is usually in a radial configuration, and the
electrical measurements are only conducted on the low voltage
side of the wind turbines (WTGs) and the high voltage side of the
substation. Thus, the commonmeasurements are the voltage at the
nodes, the active and reactive power generated by the WTGs and
the active and reactive power injected into the transmission
network through the substation. A state estimator in this type of
network has little redundancy because it only includes nodal
measurements, and the active power (voltage angles) is strongly
decoupled from the reactive power (voltage magnitudes). There-
fore, the resulting system has a weak observability; this means that
if the measurements in only one WTG are not available, then the
system may not be observable. Furthermore, there is no guarantee
that the results are technically feasible (e.g., due to out-of-range
values, unrealistic power flows and values that are incompatible
with WTG operation) because the WTG behavior (e.g., the PQ
model of asynchronous machines) is not included in the method.

To overcome the aforementioned drawbacks, this paper pro-
poses to include functions that model the WTG behavior (i.e.,
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Nomenclature

k number of iterations
x state vector (module Ui and qi nodal voltage phase)
h functions that relate measurements to state variables
zm measurements vector
ε errors vector
d constraints vector
c(x) functions of the constraints vector
W inverse covariance matrix
H Jacobian matrix of the functions h(x), in x(i)

C constraint matrix
Dz(i) vector measurement errors zm

Pi active power injected at node i
Qi reactive power injected at node i
QCi reactive power generated by capacitors in node i
Ui
m measurement of the voltage at node i

Pi
m measurement of the active power injected at node i

Qi
m measurement of the reactive power injected at node i

QCi
m measurement of the reactive power generated by the

capacitors in node i
n number of nodes in the network
N set of nodes in the system
nnR reference node for voltage angles
NUm set of nodes with voltage measurements
NPm set of nodes with injected active power measurements
NQm set of nodes with injected reactive power

measurements
Nnull set of nodes with virtual measurements (null injected

active and reactive power)
Ne set of nodes with active and reactive power that

belongs to the extended state vector
Ne,FSWT set of nodes for FSWTs
Ne,VSWT�DFIGs set of stator-side nodes in VSWT-DFIGs
Ne,VSWT�DFIGr set of rotor-side nodes in VSWT-DFIGs
Ne,VSWT�SG set of nodes for VSWT-SGs
Xm
ðNÞ vector of measurements Xm

i at nodes N;
thus,Xm

ðNÞ ¼
�
::: Xm

i :::
�

i2N
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functions that establish the relationship between voltage, active
power and reactive power in WTGs) in the state estimation equa-
tions. These relationships are not usually included in a classic state
estimation [3]; they are only partially considered in certain power
flow analyses [4,5,6].

TomodelWTGs, equations can be used that typically include the
slip as input data and several assumptions about the generator
behavior (e.g., the relationship between power and slip) [7,8]. Using
these equations has certain disadvantages: the need for slip mea-
surements; the equation parameters are usually unknown; and
finally, the additional complexity in the state estimator does not
guarantee enhanced redundancy.

To overcome those problems, herein,WTGsweremodeled using
polynomial fitting techniques and back-propagation neural net-
works (BPNNs) [9,10]. Thus, the input data for the proposed state
estimator are the network parameters and measurements; the
latter are used for WTG modeling and during SE. The resulting
models, polynomial equations and BPNNs can easily be integrated
into the SE due to their simplicity and derivatives. To integrate
these functions into the state estimator, a method is proposed that
increases the number of state variables, including the variables
active and reactive power of wind turbines, and uses the WTG
models as restrictions. As a result, the state estimation problem
becomes a constrained optimization problem [11,12]. The main
advantage of the proposed model is that the decoupling between
PeV and between Q-d disappears, the system redundancy is
increased, and the results obtained are technically feasible due to
inclusion of the WTG models.

To demonstrate its operation, the proposed method was applied
to the Sotavento Experimental Wind Farm S.A. (http://www.
sotaventogalicia.com) [13,14]. This farm is dedicated to D&I of
wind power and includes nine different types of 24 WTGs,
including fixed-speed and variable-speed wind turbines.
2. Static state estimation

2.1. Classical state estimator

Static state estimation (SE) consists of calculating a set of vari-
ables (state variables) from a set of network measurements. Usu-
ally, the measurements are at the magnitude of the node voltages,
the active and reactive power flow in branches and the active and
reactive power injection in nodes. On the other hand, the state
variables are the magnitude and angle of the node voltages. When
the state variables are known, any electric variable in any element
of the network can be obtained. A diagram of the classical SE
methodology is shown in Fig. 1.

In SE, the measurements are considered erroneous with the
following behavior:

1. The histogram of the error values can be approximated using a
normal pdf with the mean m and standard deviation s: N(m,s).

2. The expectation of errors is zero: E[ei] ¼ 0.
3. The errors are independent: E[ei$ej] ¼ 0; thus, it can be defined

as a diagonal covariance matrix, where the main diagonal is the
standard deviation vector:

CovðeÞ ¼ E
h
e$eT

i
¼ W�1 ¼ diag

n
s21;s

2
2;…;s2m

o
: (1)
The SE method consists of calculating the state vector x such
that the error between the measured values and those obtained
from the estimator is minimized. According to previous paragraphs,
assuming that measurements have an associated error (ε), the
following system of equations can be written [1]:

zm ¼ hðxÞ þ ε: (2)

Therefore, the following index must be minimized [10]:

minfJðxÞg ¼ min
n
½z� hðxÞ�T$W$½z� hðxÞ�

o
: (3)

The method to minimize this term is the weighted least squares
method. The state vector can be obtained by iteratively solving the
following system of equations:

�
HT

�
xðkÞ

�
$W$H

�
xðkÞ

��
$DxðkÞ ¼ HT

�
xðkÞ

�
$W$

�
DzðkÞ

�
xðkþ1Þ ¼ xðkÞ þ DxðkÞ

(4)

DzðkÞ ¼ zm � h
�
xðkÞ

�
: (5)

For a wind farm, the state vector is formed by the angle of
voltage at every network node except the reference node nR and the

http://www.sotaventogalicia.com
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Fig. 1. Implementation methodology for a classical state estimator.
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magnitude voltage at every network node, which yields the
following:

x ¼ �
qðN� nRÞ UðN Þ

�
: (6)

The measurement vector is formed by the entire available
voltage magnitude as well as the active power and reactive power
values, including the interconnection nodes with a null P and Q. The
resulting measurement vector can be written as follows:

zm ¼
h
Um
ðN UmÞ PmðN PmÞ PmðN nullÞ Qm

ðN Qm
� Qm

ðN nullÞ
i
:

(7)

Finally, the set of equations h(x) is:

Um
i ¼ Ui þ εUi

Pmi ¼ hPi
ðU; qÞ þ εPi

Qm
i ¼ hQi

ðU; qÞ þ εQi

(8)

where the functions hPi ðU; qÞ and hQi
ðU; qÞ are:

hPi
ðU; qÞ ¼ Ui$

Xn
k¼1

Uk
�
Gi;k$cosðqi � qkÞ þ Bi;k$senðqi � qkÞ

�

hQi
ðU; qÞ ¼ Ui$

Xn
k¼1

Uk
�� Bi;k$cosðqi � qkÞ þ Gi;k$senðqi � qkÞ

�

(9)

Thus, the following matrix H results:
(10)
In the previous equation, it must be considered that the matrix
1(NUm,N) is a matrix with the size NUm � N with its elements at one
when the corresponding measurement variable can be directly
related to a state variable. For example, when the complete nodes
vector is N¼{1,2,3,4,5}, and the node vector with voltage mea-
surements is NUm ¼ {1,2,5}, the array vUm/vU can be represented as
follows:
vUm
f1;2;5g

vUf1;2;3;4;5g
¼

2
41 0 0 0 0
0 1 0 0 0
0 0 0 0 1

3
5 ¼ 1ðf1;2;5g;f1;2;3;4;5g (11)

When a state estimator is used, a typical concern is the
observability of the system, which implies considerations
regarding topology and measurements. A network is observable
if it has at least 2n�1 measurements with n�1 measurements of
P and n measurements of U or Q due to decoupling between PeU
and between Q-d. Furthermore, the rank of the matrix H must be
equal to the number of variables for the state vector x. Therefore,
a wind farm is observable with the typical measurements U, P
and Q on the low voltage side of the WTGs and the high voltage
side of the substation. However, it has little redundancy because
the lack of only two measured values for P or Q renders the
system unobservable. As shown in the following paragraphs, one
objective of the proposed SE method is to increase the observ-
ability robustness.

2.2. Constrained state estimator

For nodes with virtual or exact measurements, it is necessary to
consider the optimization problem as a constrained problem [11].

Measurements : z ¼ hðxÞ þ ε

Virtual measurements : cðxÞ ¼ 0
(12)

For example, wind farms have interconnection nodes, where the
injected active and reactive powers equal zero (see the nodes from
31 to 55 in Fig. 13). The constrained SE problem can be presented as
an optimization problem and expressed as follows:

minfJðxÞg ¼ min
n
½z� hðxÞ�T$W$½z� hðxÞ�

o
restricted to : cðxÞ ¼ 0

(13)

From LaGrange theory, optimization with constraints of the
functional J can be rewritten as a new functional to minimize J0:
minfJ0ðxÞg ¼ min
�
1
2
$½zm � hðxÞ�T$W$½zm � hðxÞ�

� lT$½d� cðxÞ�
	
: (14)

Considering that x(kþ1) ¼ x(k) þ Dx(k), this equation can be solved
iteratively [11] [12]:
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(15)

where the array H is:

(16)

The constraints matrix C, where the injected active and reactive
powers equal to zero, is:

(17)
Fig. 2. Implementation methodology for the proposed extended state estimator.
3. Extended state estimator

In this section, the proposed SE method (extended state esti-
mator) is presented, wherein equations relating the WTG variables
active power, reactive power, voltage and reactive power generated
at the capacitor banks are incorporated into the state estimator.
Therefore, the state variable vector was extended to include the
new variables. Similarly, any voltage measurements with the cor-
responding state variable, active and reactive power injected at the
WTG nodes, will be included in the extended state vector:

xe ¼
�
qðN� nRÞ UðN Þ PðN eÞ QðN eÞ

�
(18)

Including the new variables implies that the equations for Pi
m

and Qi
m at the WTG nodes (see (9)) are rewritten to consider the

new state variables:

Pmi ¼ hPi
ðU; qÞ þ εPi

⇔

�
Pmi ¼ Pi þ εPi

hPiðU; qÞ � Pi ¼ 0

Qm
i ¼ hQi

ðU; qÞ þ εQi
⇔

�
Qm
i ¼ Qi þ εQi

hQi
ðU; qÞ � Qi ¼ 0

(19)

Due to these modifications, the equations that relate voltage as
well as active and reactive power in the WTGs can be included:

he
�
UðN eÞ; PðN eÞ;QðN eÞ

�
¼ 0 (20)

These equations are included in the proposed SE as constraints.
They were obtained as depicted in the following section.

Based on the previous definitions, an extended Jacobian matrix
He, was defined as follows and considers the new set of variables:
(21)

In addition, the extended constrained matrix Ce is:

(22)

The resulting system of equations can be solved using (15).
Furthermore, it must be considered that when the measurements
in anyWTG are unavailable, only their corresponding equations are
excluded from the extended matrix He.

The proposed methodology for the extended SE is shown in
Fig. 2, where the relationship between the WTG models, mea-
surement data and estimator is depicted, which can be compared
with the classical SE shown in Fig. 1. The main characteristics of the
proposed method are the following:

� Including the WTG models is the SE with constrains
� Extended state vector includes all variables measured for the
WTGs.

� WTG modeling from measurement data using BPNNs and
polynomial fitting.



Table 1
Wind turbines installed in the Sotavento wind park.

Wind turbine model Number
label

Power
(kW)

Generator Pitch/Speed

Izar-Bonus 1.3 Mw 1 1300 IG Variable/Variable
Made AE e 46 6, 10, 17, 23 660 IG Fixed/Fixed
Neg Micon NM-750 2, 8, 13, 20 750 IG Fixed/Fixed
Neg Micon NM-900 12 900 IG Fixed/Fixed
Ecotecnia 44 e 640 4, 11, 15, 21 640 IG Fixed/Fixed
Made AE-52 16 800 SG Variable/Variable
Izar-Bonus MK e IV 5, 9, 18, 22 600 IG Fixed/Fixed
Gamesa G-47 3, 7, 14, 19 660 DFIG Variable/Variable
Made AE e 61 24 1320 IG Fixed/Fixed
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Table 2 shows a summary of the types of WTGs, the equations
used to model them, the modeling technique and the variables as
well as parameters involved. The modeling results have been
evaluated using the typical fitness indicators: the coefficient of
determination (R2) and the root-mean-square error (RMSE).
4. WTG modeling

The WTG equations are included in the proposed extended SE
using [20]. These equations model the WTG behavior by relating
voltage, active power and reactive power. Based on the WTGs
installed in the Sotavento wind park [15], the following three WTG
technologies were considered in this paper:

� Fixed speed WTG based on an induction generator (FSWT)
� Variable speed WTG based on a doubly fed induction generator
(VSWT-DFIG)
Table 2
Modeling parameters and test results for all WTs.

Type Function Modeling Model

FSWT he;IGi
ðUi; Pi;Qi;QCiÞ ¼ 0 BPNN Input

Target
Layers
Transf
Trainin
Perf. g
Min. p

VSWT-DFIG he;DFIGI;i;j
ðPRj; PSiÞ ¼ 0 BPNN Input

Target
Layers
(simila

he;DFIGII;j
ðPRj;QRjÞ ¼ 0 Fitted function Input

Outpu

he;DFIGIII;i
ðPSi;QSiÞ ¼ 0 Fitted function Input

Outpu

VSWT-SG he;SGi
ðUi; Pi;QiÞ ¼ 0 Fitted function Input

Outpu
� Variable speed WTG based on a synchronous generator with an
AC/AC back-to-back converter (VSWT-SG)

The following paragraphs describe the method for obtaining the
functions that model behavior for the different types of WTGs. In
this paper, to generate these models, measurement data were used
from studying the wind park SCADA for one year. All WTGs were
modeled using BPNNs trained frommeasurement data or by fitting
polynomials. In the following paragraphs, the equations related to
each technology are depicted, and the results of the BPNNmodeling
are shown.

4.1. Fixed speed WTG based on induction generator (FSWT)

To model an FSWT, three variables must be included in the
extended state vector: the active power Pi and reactive power Qi

injected by the WTG, as well as the reactive power QCi generated at
the capacitor bank. This construction implies that the following
equations are used:

Pmi ¼ Pi þ εPi
Qm
i ¼ Qi þ εQi

Qcmi ¼ Qci þ εQi
hPi

ðU; qÞ � Pi ¼ 0
hQi

ðU; qÞ � Qi ¼ 0
he;IGi

ðUi; Pi;Qi;QCiÞ ¼ 0

9>>>>>>=
>>>>>>;

i2Ne;IG (23)

where he,FSWTi is the function that models the ith FSWT. This
function was obtained using BPNNs, as shown below.

An FSWT is formed by an induction generator and a power
factor controller (PFC), which controls the different capacitor bank
parameters WT Test

R2 RMSE

vector: [P, Q, U]
vector: [Qc]
: [3 5 30 1]
er functions: tansig, tansig, purelin
g method: LevenbergeMarquardt
oal: 10�6

erf. gradient: 10�6

1 0.992 0.0054
2 0.928 0.0031
4 0.989 0.0014
5 0.980 0.0031
6 0.997 0.0020
8 0.917 0.0026
9 0.942 0.0025

10 0.997 0.0022
11 0.992 0.0016
12 0.940 0.0014
13 0.981 0.0025
15 0.992 0.0014
17 0.997 0.0019
18 0.962 0.0017
20 0.904 0.0033
21 0.993 0.0014
22 0.967 0.0025
23 0.988 0.0024
24 0.967 0.0028

vector: [PS]
vector: [PR]
: [1 5 10 1]
r to the previous BPNNs)

3 0.983 2.4844
7 0.973 2.8881

14 0.966 2.9718
19 0.959 3.1924

vector: [PR]
t vector: [QR]

3 0.992 0.6833
7 0.994 0.6850

14 0.996 0.6433
19 0.998 0.6057

vector: [PS]
t vector: [QS]

3 0.990 0.2491
7 0.992 0.2395

14 0.992 0.2369
19 0.993 0.2110

vector: [P, U]
t vector: [Q]

16 0.973 1.7017



Fig. 3. Output Qc against time estimated using a BPNN for an FSWT Izar-Bonus 1.3 MW.

Fig. 5. Induction generator with measurements for Ui, Pi, QGi and QCi.
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steps. Therefore, to model this WTG, the models and their corre-
sponding parameters for the generator and PFC are necessary. That
type of information is not typically provided by the WTG manu-
facturer. Furthermore, the PFC model may require representation
by a logical function that cannot be included in the SE due to its
inherent discontinuities. To overcome these inconveniences, a
BPNN is proposed to obtain he,FSWTi (see Appendix IX.B); thus, the
resulting function is differentiable and can be included in the SE
(see Appendix IX.A). The BPNN output is shown in Figs. 3 and 4.

The reactive power generated by the shunt capacitors (QCi) can
be included in the extended SE in several ways, depending on the
available measurements:

- When QCi measurements are available (QCi
m; see Fig. 5), it is

sufficient to consider the equation that relates QCi
m with the

variable QCi in matrix H as follows:

Qm
Ci ¼ QCi þ ε: (24)
- When the status of the PFC is available (see Fig. 6), a similar
procedure to the previous case can be used [16]. The mea-
surement values QCi

m can be obtained using the following:
Fig. 4. P-Q diagram for an FSWT Izar-Bonus 1.3 MW.
Qm
Ci ¼

Ui
2

$
XNCi

QCij
bij (25)


UN

�
j¼1

where NCi is the number of capacitor steps in the ith FSWT, bij is a
binary variable that indicates the status of the jth step, Un is the
capacitor-rated voltage, and QCij is the rated reactive power for each
capacitor step.

4.2. Variable-speed WTG based on a doubly fed induction generator
(VSWT-DFIG)

Tomodel VSWT-DFIGmachines, four variables must be included
in the extended SE (see Fig. 7): the active and reactive power on the
rotor side (PRi, QRi), as well as the active and reactive power on the
stator side (PSi, QSi). The following equations relate the active and
reactive power injection on the rotor and stator sides and must be
considered:

PmRj ¼ PRj þ εPRj

PmSi ¼ PSi þ εPSi
Qm
Rj ¼ QRj þ εPRj

Qm
Si ¼ QSi þ εPSi

hPiðU; qÞ � PSi ¼ 0
hPjðU; qÞ � PRj ¼ 0
hQiðU; qÞ � QSi ¼ 0
hQjðU; qÞ � QRj ¼ 0

9>>>>>>>>>>>=
>>>>>>>>>>>;

i2Ne;DFIGS
j2Ne;DFIGR

(26)

he;DFIGI;i;j

�
PRj; PSi

� ¼ 0
o i2Ne;DFIGS
j2Ne;DFIGR

(27)

he;DFIGII;j

�
PRj;QRj

� ¼ 0
o
j2Ne;DFIGR (28)

he;DFIGIII;i
ðPSi;QSiÞ ¼ 0

o
i2Ne;DFIGS (29)

where (27), (28) and (29) are the equations that model the ith
VSWT-DFIG. It must be considered that in these types ofWTGs, two
sets of nodes must be considered: one set includes the nodes on the
stator side, and the other set includes the nodes on the rotor side.
Finally, the relationship in (27) was obtained using BPNNs with
measured powers from the stator and rotor sides for a Gamesa G47
VSWT-DFIG. The behavior of the resulting function is shown in
Fig. 8.
Fig. 6. Induction generator with measurements for the Ui, Pi, Qi and PFC status.
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Due to their simplicity, the remaining equations (28) and (29)
were obtained using a polynomial obtained by fitting techniques
and measured data.

Using the above-described fitting technique, the resulting rela-
tionship for equation (28) is:

he;DFIGII;i
ðPSi;QSiÞ ¼ QSi � a$P2Si þ b$PSi þ c ¼ 0 (30)

where the coefficients a, b and c are defined using the power factor
setpoint (PFp) as a parameter.

a ¼ �3:8571$PFpþ 3:905

b ¼ ±tan


acos



PFp

��
where

�� if PFp inductive
þ if PFp capacitive

c ¼ 0

(31)

For example, Fig. 9 shows the measured values compared with
the values obtained using a fitted function for different power
factor setpoint values. Similarly, equation (29) can be defined using
the following linear equation:

he;DFIGIII;j

�
PRj;QRj

� ¼ QRj � a$PRj þ b ¼ 0

a ¼ 0:109
b ¼ 0:002337

(32)

Fig. 10 shows the measured values compared with the values
obtained using the fitted function.
4.3. Variable-speed WTG based on a synchronous generator with an
AC/AC converter (VSWT-SG)

To include VSWT-SGs in the extended SE, two variables must be
considered: the active power Pi and reactive Qi injected at the WTG
node; this construction implies that the equation relating the active
power to the reactive power must be considered, which yields the
following:
Pmi ¼ Pi þ εPi
Qm ¼ Q þ ε

9>>=

i i Qi

hPi
ðU; qÞ � Pi ¼ 0

hQi
ðU; qÞ � Qi ¼ 0

>>;
i2Ne;SG (33)

he;SGi
ðUi; Pi;QiÞ ¼ 0

�
i2Ne;SG (34)

where equation (34) models the ith VSWT-SG. This type of WTG
has an AC/AC back-to-back converter between the generator and
low voltage side of the transformer (see Fig. 11). Theoretically, this
construction yields the capability to control the WTG and maintain
a constant power factor setpoint; however, this is not always
generated in real machines. As in the previous section, this equa-
tion can be obtained by fitting measurement data with a linear
function, wherein the parameters depend on the power factor
setpoint. For example, the resulting values obtained with the fitted
function are compared with measurements in Fig. 12.

4.4. The extended state estimator

Using the FSWT, VSWT-DFIG and VSWT-SG relationships, the
proposed extended Jacobian matrix He and matrix of constraints Ce
were generated and can be written as:

(35)
(36)



-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
-0,004

-0,002

0

0,002

PRi

Q
Ri

Fig. 10. Relationship between the active power PRi and reactive power QRi on the rotor
side for different power factor setpoint values in the turbine Made AE46.

Fig. 7. VSWT-DFIG with measurements for Ui, Pi and Qi on the rotor and stator sides.
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5. Results for the Sotavento Experimental Wind Park

5.1. The wind park

The project is referred to as Sotavento Galicia S. A. It was created
in 1997 and promoted by the Consellería de Industria e Comercio
(Department for Industry and Trade), which is a department of
Xunta de Galicia (local government). Its objective is to generate not
only economic but also scientific and technical advantages. Three
public institutions are involved in this project, which provided 51%
of its capital. The Sotavento Experimental Wind Park (see Table 1
and Fig. 13) was formed by 24 WTGs with 17.56 MW total power
and 38500 MWh/year estimated energy production.
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Fig. 8. Relationship between active power on the rotor and stator sides in a doubly-fed
generator in a VSWT-DFIG Made AE46.
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Fig. 9. Relationship between the active power PSi and reactive power QSi on the stator
side for different power factor setpoint values in the turbine Made AE46.
5.2. Available measurements

Measurements are available at the Sotaventowind farm through
the centralized monitoring system (SCADA), including real-time
voltage, active power and reactive power on the low voltage side
of the WTG transformers and the high voltage side of the sub-
station. In addition, the P and Q measurements are available on the
rotor and stator sides of the VSWT-DFIGs. Finally, the status of the
PFCs for the WTGs and substation is known [16].

Considering the park configuration (see Fig. 13), the resulting
network was formed by the following 60 nodes.

� 1e24: LV bars at 24 WTGs
� 25e28: rotor-side LV bars at the VSWT-DFIGs
� 29, 30: bars at the substation
� 31e54: MV bars at the 24 WTGs
� 55e56: LV and MV control building bars
� 57e60: virtual nodes used to model three winding transformers
in VSWT-DFIGs.

The measurements for the nodes 31e55 and 57e60 are virtual
(P ¼ 0, Q ¼ 0).

Therefore, the state vector is formed by 119 variables, and the
extended vector of estate variables includes 188 elements. The total
~
~SG

U,P,Q

NETWORK

Fig. 11. Synchronous generator measurements for Ui, Pi and Qi.

Fig. 12. Relationship between the active power P and reactive power Q injected at the
WTG node in the turbine MADE AE52.
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Fig. 13. Sotavento wind farm.

Fig. 14. P and Q for an FSWT Izar-Bonus 1.3 MW (the measurements are in gray, and the values obtained using SE are in black).
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Fig. 15. P and Q for the FSWT Made AE-46 (the measurements are in gray, and the values obtained with SE are in black).

Fig. 16. Architecture for the input layer.

Fig. 17. Architecture for the hidden layer.
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number of equations is 265; 109 are part of the extended Jacobian
matrix He, and l56 are part of the extended matrix of constraint Ce.
5.3. Estimation results

To demonstrate operation of the proposed extended SE, the
method was tested using measurement data recorded every
10 min over 30 days. Fig. 14 and Fig. 15 show the relationships
between the active and reactive power for two FSWTs (Izar-Bonus
1.3 MW and Made AE-46) for which two different power factor
correction systems were used.
Fig. 18. Architecture for the output layer.

Fig. 19. Bonus 1.3 MW generator admittance.



Fig. 20. Training pattern for the BPNN (Izar-Bonus 1.3 MW).

Fig. 21. Results for WT1, W

Fig. 22. Results for WT18, W
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The modeling results were evaluated with the coefficient of
determination (R2) and root-mean-square error (RMSE), as shown
in Table 2.

Finally, Appendix IX.C presents the relationship between active
and reactive power for each WTG at the wind park.
6. Conclusions

State estimation in wind parks is a useful tool for analyzing its
operation conditions. Thus, the working state of the complete
installation can be established, and another type of data can be
derived, including out-of-service WTGs, aging capacitor banks,
communication failures, energy loss estimates, and so on. However,
the classic SE is not reliable for predicting behavior due to the
typical decoupling between the active and reactive power in this
T10, WT12 and WT16.

T20, WT21 and WT24.



Fig. 23. Results for WT7.
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type of installation. Thus, the solutions from classic SE may not be
technically feasible (out-of-range values, unrealistic power flows
and values that are incompatible with the WTG operation), and the
system exhibits weak observability (the system is no longer
observable when data from a single WTG is lost).

To overcome the aforementioned drawbacks, an extended SE is
proposed herein, where the WTG models are incorporated into the
equation system. To obtain a set of equations that can easily be
included in the SE, polynomial fitting and BPNN techniques were
used, which only require measurement data; thus, the WTG pa-
rameters are not necessary.

One consequence is that the decoupling between PeV and
between Q-d disappears; thus, solutions for the proposed method
are always technically feasible, at least at the WTG level. More-
over, the method is more robust against a lack of measurements,
which are typically due to communication errors or metering
device failures.
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The method has been tested using measurement data from
Sotavento Wind Park, which includes WTGs for different types of
technologies (FSWT, VSWT-DFIG and VSWT-SG).
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Appendix

A. Obtaining the derivative of a BPNN

Back propagation neural networks (BPNNs) [17] [18] are typi-
cally used as the best approximation for multivariable functions
[19] that have no known analytical expression or are difficult to use.
In this paper, a BPNN was used as an activation function based on a
hyperbolic tangent [9]. As a consequence, the resulting neural
networks are continuous and differentiable. Assuming that five
neurons are in the input layer (see Fig. 16), the BPNN output can be
written as follows:
Next, the second hidden layer (assuming that it is formed by 10
neurons) with the same architecture as the input layer (see Fig. 17)
is expressed as:

½OL2�10�1 ¼ tan sig
�½WL2�10�5 � ½OL1�5�1 þ ½BL2�10�1

�
(38)

Finally, the output layer (layer 3) (see Fig. 18) is a purelin-type
layer, which yields the following equation:
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Qc ¼ ½OL3�1�1 ¼ �½WL3�1�10 � ½OL2�10�1 þ ½BL3�1�1
�
: (39)
Including the previous equations in the extended SE requires
determining the partial derivatives with respect to each input
parameter evaluated at the operating point (P, Q and U). The de-
rivative of the output with respect to the active power is:

vQc
vP

¼ v
�½WL3 �1�10 � ½OL2�10�1 þ ½BL3�1�1

�
vP

¼

¼ ½WL3�1�10 �
v
�½OL2�10�1

�
vP

(40)

The OL2 derivative is calculated with respect to the power by
considering that tansig'(x) ¼ 1�tansig(x)2; therefore, the following
applies:
v½OL2�10�1
vP

¼ �½1 �10�1 � ½OL2�10�1+½OL2�10�1
�
+
v
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�
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v
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� (41)
In addition, the derivative of the input layer with respect to
power is given by:

v½OL1�5�1
vP

¼�½1�5�1�½OL1�5�1+½OL1�5�1
�
+
v
�½WL1�5�3�½EL1�3�1

�
vP

¼

¼�½1�5�1�½OL1�5�1+½OL1�5�1
�
+

0
@�

WL1;1
�
5�1�

v
�
EL1ð1;1Þ

�
vP

1
A¼

¼�½1�5�1�½OL1�5�1+½OL1�5�1
�
+
�
WL1;1

�
5�1

(42)

where the operator + corresponds to the Hadamard product.

B. BPNN training to model FSWT

The data values that a BPNN requires for training must include
all of the possible running states for the system that will be
modeled. Nevertheless, in an FSWT, certain capacitor banks are
rarely used; to overcome this lack of data, a two-step process is
proposed. The first relationship model is between the real
component (YPi) and the imaginary component (YQi) of the com-
plex apparent admittance of the asynchronous generator:
h(YPi,YQi) ¼ 0. Thus, the effect of voltage in the reactive power
demanded can be decoupled from the equation system. Usually,
the machine parameters for hIGi are not provided by manufac-
turers; under these conditions, to determine the relationship be-
tween YP and YQ, the use of measurement values is proposed.
Therefore, for each Pi, Qi and Ui measurement, the following
equations can be written:

YPi ¼
Pi
U2
i

YQi ¼
Qi

U2
i

� YCi

(43)
As a result, a set of YPi and YQi values can be obtained. Fig. 19
shows the function h(YPi,YQi) ¼ 0 for an Izar Bonus 1.3 MW when
different capacitor bank steps are connected.

In the second step, h(YPi,YQi) ¼ 0 is used to obtain a training
pattern for the BPNN that models the function he,IGi(Ui,Pi,Qi,QCi)¼ 0.
Fig. 20 shows the training pattern for a BPNN used to model the
behavior of the PFC for a Izar-Bonus 1.3 MW generator with four
compensation steps at 187.5, 225, 262.5 and 350 kVAr. The BPNN
training pattern has the input values Pi between 0 and Pn and Ui

between 0.96 and 1.04 in pu. The resulting outputs are theQi andQci

values obtained using (23).

C. P and Q for WTGs at Sotavento Wind Park

In this section, these values are presented for each WTG model
in the wind park (see Figs. 21e23); they are labeled from WT1 to
WT24 (see Table 1).
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